women's
 health
 australia

the australian longitudinal study on women's health

Changes Report 2:

Examples from the Australian Longitudinal Study on Women's Health for Analysing Longitudinal Data

women's

Changes Report 2:

Examples from the Australian Longitudinal Study on Women's Health for Analysing Longitudinal Data

June 2005
Australian Longitudinal Study on Women's Health Report to the Department of Health and Ageing

This report is based on the collective work of the Statistics Group of the Australian Longitudinal Study on Women's Health, and was written by Jessica Ford, Annette Dobson, Anne Young, Virginia Wheway, Anne Russell, and Jennifer Powers.

CONTENTS

PART 1: Models for Longitudinal Data 2 -
1.1 The Australian Longitudinal Study on Women's Health - 2 -
1.2 Introduction - 4 -
1.3 Scope - 4 -
1.4 Marginal Models - 5 -
1.5 Random Effects Models - 5 -
1.6 Transition Models - 7 -
PART 2: Use of SAS for analysing longitudinal data -9-
2.1 Statistical Analysis Software (SAS) -9-
2.2 Data Structure -9-
2.3 Coding TIME - 11 -
2.3.1 Baseline Coding - 11 -
2.3.2 Centred Coding 12 -
2.3.3 Endpoint coding 12 -
2.4 General SAS code 13 -
2.5 Computational issues in implementing SAS Procedures 14 -
2.5.1 Specification of random effects 14 -
2.5.2 Convergence 14 -
2.5.3 Methods to randomly select a smaller sample to deal with non-convergence 16 -
2.5.4 Estimates of group means 17 -
2.5.5 Missing waves and missing items - 17 -
PART 3: Example of continuous outcome - measured at two times 18 -
3.1 Introduction 18 -
3.2 Model SAS Code 20 -
3.3 MODEL 1: PROC GENMOD unadjusted 22 -
3.4 MODEL 2: PROC GENMOD adjusted 25 -
3.5 MODEL 3: PROC MIXED unadjusted 28 -
3.5 MODEL 3: PROC MIXED unadjusted 28 -
3.6 MODEL 4: PROC MIXED adjusted 31 -
3.7 Summary of least squares means - 35 -
PART 4: Plotting results using SAS 37 -
PART 5: Sample Size 41-
5.1 Single Time Point Studies 41-
5.2 Extension to Longitudinal Studies - 43 -
PART 6: References - 49 -

PART 1: Models for Longitudinal Data

1.1 The Australian Longitudinal Study on Women's Health

The Australian Longitudinal Study on Women's Health (ALSWH) - widely known as Women's Health Australia - is a longitudinal population-based survey, funded by the Australian Government Department of Health and Ageing. The project began in 1996 and examines the health of over 40,000 Australian women.

The ALSWH involves three large, nationally representative, cohorts of Australian women representing three generations:

- The Younger women, aged 18-23 when first recruited in 1996 ($\mathrm{n}=14247$), are now in their late 20s, the peak years for relationship formation, childbearing, and establishing adult health habits (eg physical activity, diet) and paid and unpaid work patterns.
- The Mid-age women, initially aged $45-50(\mathrm{n}=13716)$, are now experiencing menopause, as well as changes in household structure, family care giving, and impending retirement, which are common at this life stage. Some are showing early signs of age-related physical decline, while some are adopting new health behaviours in preparation for a healthy old age.
- The Older women, aged 70-75 when first recruited $(\mathrm{n}=12432)$, are now in their 80 s and facing the physical, emotional and social challenges of old age.

Features of the study design include:

- Women were randomly selected from the Medicare database and invited to participate in the longitudinal study.
- Women in rural and remote areas of Australia were intentionally over-sampled to ensure adequate numbers for statistical analysis.
- After Survey 1 in 1996, the three age cohorts have been surveyed sequentially, one cohort per year, on a rolling basis since 1998 (see Figure 1.1).

Figure 1.1: Timeline for main ALSWH Surveys

The study was designed to explore factors that influence health among women who are broadly representative of the entire Australian population. The study assesses:

- Physical and emotional health (including well-being, major diagnoses, symptoms)
- Use of health services (GP, specialist and other visits, access, satisfaction)
- Health behaviours and risk factors (diet, exercise, smoking, alcohol, other drugs)
- Time use (including paid and unpaid work, family roles, and leisure)
- Socio-demographic factors (location, education, employment, family composition)
- Life stages and key events (such as childbirth, divorce, widowhood).

The project provides a valuable opportunity to examine associations over time between aspects of women's lives and their physical and emotional health. It provides an evidence base to the Australian Government Department of Health and Ageing - as well as other Australian and State/Territory Departments - for the development and evaluation of policy and practice in many areas of service delivery that affect women. An overview of the study and investigators, copies of the questionnaires, and abstracts of all publications and presentations, can be located on the Study's website http://www.sph.uq.edu.au/alswh.

1.2 Introduction

This report deals mainly with the analysis of correlated data arising from repeated measurements, when the outcome measurements are continuous and are assumed to have a multivariate Normal distribution. Analogous methods are available for repeated measures of categorical outcome variables.

Generalised Estimating Equations (GEEs) and random effects models provide practical methods for these data.

1.3 Scope

This report summarises and illustrates the main statistical methods for analysing longitudinal data from the ALSWH.

The mathematical and statistical models generally applied to longitudinal data are described briefly. Examples from the ALSWH data demonstrate the implementation of these models in Statistical Analysis Software (SAS) ${ }^{1}$. The GENMOD procedure can fit models to correlated responses by the GEE method. However, random effects models, fitted using the MIXED procedure, may be more appropriate for many situations. The interpretation and presentation of the results are also discussed.

Longitudinal analysis within the ALSWH typically involves an outcome variable $\mathrm{Y}_{\mathrm{i} j}$, measured for the ith subject at survey j . Measurements on the same subject at successive surveys are likely to be correlated because they refer to the same individual. They are also expected to be affected by a set of k covariates or explanatory variables $\left\{\mathrm{x}_{\mathrm{ijk}}\right\}$. For example, variable $1 \mathrm{x}_{\mathrm{ij} 1}$ may be the weight of woman i at survey j ; $\mathrm{x}_{\mathrm{ij} 2}$ may be an indicator variable for whether or not she is a current smoker at survey j ; and $\mathrm{x}_{\mathrm{i} .3}$ may be an indicator variable denoting her country of birth, which does not vary across surveys. The responses Y_{ij} are assumed to have a distribution from the exponential family (which includes the Normal distribution for continuous scale measurements, the binomial distribution for dichotomous measures, the multinomial distribution for categorical variables with more than two
categories, and the Poisson distribution for count data). Any model will include the specification of the particular distribution for the Y_{ij} 's, an equation relating the expected value $\mathrm{E}\left(\mathrm{Y}_{\mathrm{ij}}\right)$ to the covariates, x_{ij}, and some way of describing the correlation between repeated measurements on the same person.

There are three basic types of models: marginal models, random effects models and transition models. These can be summarised as follows:

1.4 Marginal Models

Marginal models are analogous to generalised linear models for independent data. Y_{ij} has some probability distribution f (e.g., f is Normal), with expected values $E\left(Y_{i j}\right)=\mu_{i j}$ which are linked to the covariates by the function $\mathrm{h}\left(\mu_{\mathrm{ij}}\right)=\mathbf{x}_{\mathrm{ij}}{ }^{\mathrm{T}} \boldsymbol{\beta}$ where $\boldsymbol{\beta}$ is a vector of parameters of interest (i.e., the effects of the explanatory variables on the outcome Y_{ij}), \mathbf{x}_{ij} is the vector of covariates $\left\{\mathrm{x}_{\mathrm{ijk}}\right\}$ and responses for the same individual i are related by correlation terms $\rho\left(\mathrm{Y}_{\mathrm{ij}}\right.$, $\left.\mathrm{Y}_{\mathrm{im}}\right)=\rho_{\mathrm{ijm}}$ (which are usually assumed to be the same for all individuals).

These models involve explicit specification of the probability distribution f , the link function h and the correlation structure. If the responses for the same individual were not correlated (i.e. $\rho_{\mathrm{ijm}}=0$) then the class of models called generalised linear models are used: these include analysis of variance and multiple regression if the Y_{ij} 's are continuous and various forms of logistic regression if the Y_{ij} 's are categorical. If the responses are correlated then the correlations have to be estimated and taken into account in estimating $\boldsymbol{\beta}$ - this involves a technique called Generalised Estimating Equations (GEEs). In SAS all of these models can be implemented using the procedure GENMOD.

1.5 Random Effects Models

An alternative way of coping with the correlation between responses from the same individual at different surveys is to define $\mathrm{h}\left(\mu_{\mathrm{ij}}\right)=\mathbf{x}_{\mathrm{ij}}{ }^{\mathrm{T}} \boldsymbol{\beta}+\mathbf{z}_{\mathrm{ij}}{ }^{\mathrm{T}} \mathbf{U}_{\mathrm{i}}$ where \mathbf{U}_{i} denotes unobserved "random" effects describing the characteristics of subject i which might be summarised over
all subjects by a probability distribution d . The terms \mathbf{z}_{ij} are used to specify which components of the model are to be regarded as random effects that are not individually estimated, in contrast to the "fixed effects" described by the parameters $\boldsymbol{\beta}$, which are estimated. The correlation between measurements Y_{ij} and Y_{im} on the same subject is "captured" in these models because the expected values μ_{ij} and μ_{im} both depend on the subject-specific random effects $\mathbf{U}_{\mathbf{i}}$.

Random effects models are also called mixed models because they actually involve both fixed effects $\boldsymbol{\beta}$ and random effects $\mathbf{U}_{\mathbf{i}}$. They are modelled in SAS using the procedure MIXED.

This quote is taken from the following website ${ }^{2}$
http://www.umanitoba.ca/centres/mchp/concept/dict/Statistics/random effects/random effect s.html
"Random effects models are also known as multi-level models, mixed models, random coefficient models, empirical Bayes models, and random regression models. Random effect models for longitudinal data are regression models in which the regression coefficients are allowed to vary across the subjects. These models have two components:

- Within-individual component: an individual's change over time is described by a regression model with a population-level intercept and slope
- Between-individual component: variation in individual intercepts and slopes is captured.

For longitudinal studies, random effects models enable the analyst to not only describe the trend over time while taking account of the correlation that exists between successive measurements, but also to describe the variation in the baseline measurements and in the rate of change over time.

There are a number of techniques for analysing longitudinal data, unlike including univariate and multivariate ANOVAs and generalised linear models with generalised estimating equations (i.e., GEE models), in random effects analyses.

1. Subjects are not assumed to be measured on the same number of time points, and the time points do not need to be equally spaced;
2. Analyses can be conducted for subjects who may miss one or more of the measurement occasions, or who may be lost to follow-up at some point during the study.

Neither univariate nor multivariate analysis of variance can be easily applied to longitudinal data that contain time-varying covariates. Both random effects models and GEE models however allow for the inclusion of time-varying and time-invariant covariates. Time-varying covariates are independent variables that co-vary with the dependent variable over time.

Both random effects and GEE models allow the analyst to model the correlation structure of the data. Thus, the analyst does not need to assume that measurements taken at successive points in time are equally correlated, which is the correlation structure that underlies the ANOVA model. The analyst also does not need to assume measurements taken at successive points in time have an unstructured pattern of correlations, which is the structure that underlies the multivariate analysis of variance model. The former pattern is generally too restrictive, while the latter is too generic. With both random effects and GEE models, the analyst can fit a specific correlation structure to the data, such as an autoregressive structure, which assumes a decreasing correlation between successive measurements over time. This can result in a more efficient analysis, with improved power to detect significant changes over time."

1.6 Transition Models

In the ALSWH we are interested in the effects of changes over time in covariates on the outcome variables in the same subjects. We are also interested in changes in the outcome variables themselves. If the outcome variable is categorical we usually define a new transition variable in terms of combinations of variables at individual surveys. If pet ownership at one survey is denoted by Y (yes) for owning a pet and N (no) for not owning a pet then the stability or change over two surveys can be defined by a categorical variable with four categories - YY, YN, NY, NN -, where for example NY is used to describe a subject
who did not own a pet at the first survey, but did own a pet at the second survey (and so became a pet owner between the surveys).

If the outcome variable is continuous (e.g., a scale measuring physical functioning) then, depending on the circumstances, we may use the measures at each survey or the difference between measures at different surveys (i.e., a measure of change in the model). It is important to also consider the initial value as a covariate to account for the effect known as regression to the mean.

If we are interested in changes or transitions in an explanatory variable then these can be included in the model explicitly as explanatory variables (such as change in weight, or change in pet ownership). The SAS procedures GENMOD and MIXED can also be used for these models but the specifications of terms may need particular care.

PART 2: Use of SAS for analysing longitudinal data

2.1 Statistical Analysis Software (SAS)

SAS is a statistical software package with extensive routines for statistical analysis, ranging from cross-tabulations and frequencies, to regression, analysis of variance (ANOVA), and longitudinal data analysis. SAS is a very flexible and powerful analytical tool which can accommodate a very large number of observations and variables and allows good control over statistical modelling.

SAS is syntax-orientated, but offers a limited menu-driven interface. SAS Online Documentation (http://v8doc.sas.com/sashtml/) offers extensive explanation of the syntax and procedures used throughout this document.

However, reliance on syntax makes SAS a slightly more difficult statistical package to use than Stata or SPSS.

2.2 Data Structure

Conventional data sets contain a single line of data (a record) for each subject or experimental unit. Fitting models for longitudinal data in SAS requires that each subject has as many lines of data as there are measurement occasions. For example, if data are recorded on n subjects for 3 surveys, the data should contain 3 records per subject. This is known as long format or stacked data. In the worked example below, 3 characteristics, each measured twice, for n subjects are transformed from standard format (n records and 7 variables - ID plus 2 variables for each characteristic) to long format ($2 n$ records and 5 variables - ID, a single variable for each of the 3 characteristics plus a variable indicating the time that each characteristic was measured).

The example shows how to structure data for a continuous outcome and two categorical explanatory variables measured at two time points (in this example at surveys 2 and 3 of the older women). The outcome variable is a measure of physical functioning (PF) from the

Medical Outcomes Study Short-Form 36 (SF-36) Quality of Life questionnaire. ${ }^{3}$ Physical functioning is measured on a scale of $0-100$, with higher scores representing better functioning. The explanatory variables are pet ownership (pet) which was collapsed into four categories (no pet; dog as a pet; cat as a pet; other pet) and ability to manage on income (income) which was also collapsed into four categories (easy; not too bad; sometimes difficult; difficult all the time and impossible).

The original data set (petdata) takes the conventional format, with 10 lines from 10 subjects, with one column of data for each variable at each survey.

The following SAS code transforms the dataset pets to long format.

```
data pets;
    set petdata;
        | *each 'set' of covariates is assigned an array*/
        array pfn {2} o2pf o3pf;
        array petn {2} o2pet o3pet;
        array incomen {2} o2income o3income;
        l*a do loop is then used to run through and rename each 'set'with
        one name and a 'time' value so that 02 and 03'X' are merely
        distinguished by the value of time*/
        do time=1 to 2;
            pf=pfn{time};
                pet = petn{time};
                income = incomen{time};
                output;
    end;
    keep ID time pf pet income;
run;
|*sort the dataset by | D*|
proc sort data = pets; by ID; run;
```

The newly created data set, petstack, now appears on 20 lines, with one column for each variable and a time variable indicating the corresponding survey.

Obs	IDalias		i ncome	p			t i me	$p f$
1	119	3	Not bad	1	no	pet	1	90.000
2	119	3	Not bad	1	no	pet	2	100.000
3	120	3	Not bad	2	d 0 g	g pet	1	10.000
4	120	1	I mp/Diff.al ways	2	dog	g pet	2	5.000
5	121	2	Diff.s mt mes	1	no	pet	1	20.000
6	121	3	Not bad	1	no	pet	2	0.000
7	122	2	Diff. smt mes	1	no	pet	1	55.000
8	122	2	Diff. smt mes	1	no	pet	2	61.111
9	123	3	Not bad	1	no	pet	1	70.000
10	123	4	Easy	1	no	pet	2	65.000
11	124	3	Not bad	1	no	pet	1	60.000
12	124	2	Diff.s mt mes	1	no	pet	2	35.000
13	125	4	Easy	1	no	pet	1	95.000
14	125	4	Easy	1	no	pet	2	100.000
15	126	3	Not bad	1	no	pet	1	75.000
16	126	3	Not bad	1	no	pet	2	75.000
17	127	3	Not bad	4	ot h	her pet	1	70.000
18	127	4	Easy	4	oth	her pet	2	85.000
19	128	3	Not bad	1	no	pet	1	90.000
20	128	2	Diff. smt mes	1	no	pet	2	90.000

2.3 Coding TIME

When fitting models to analyse longitudinal data, the method selected for coding the time variable (time) will influence the interpretation of the model. Three options are discussed, with examples of data from the first four surveys of each ALSWH cohort.

The surveys were (and will be) conducted in the years shown in table 2.3.0.

Table 2.3.0: Timeline for the ALSWH Surveys

	Survey 1	Survey 2	Survey 3	Survey 4
Younger	1996	2000	2003	2006
Mid-age	1996	1998	2001	2004
Older	1996	1999	2002	2005

2.3.1 Baseline Coding

Code time so that the baseline measure has a value of zero and successive measurements are incremented by the number of years between surveys. Using this coding, the intercept in the model represents the mean value of the dependent variable at baseline.

Table 2.3.1: Baseline coding for the first four surveys

	Survey 1	Survey 2	Survey 3	Survey 4
Younger	0	4	7	10
Mid-age	0	2	5	8
Older	0	3	6	9

2.3.2 Centred Coding

Code time by centring the values. Using this format the intercept represents the dependent variable measurement at the midpoint of the period of analysis. In the ALSWH time could be centred around the mid-point between the first and last survey analysed.

Table 2.3.2: Centred coding for the first four surveys

	Year S1	Year S4	Middle S1-S4	Mid- point	Survey $\mathbf{1}$	Survey $\mathbf{2}$	Survey $\mathbf{3}$	Survey $\mathbf{4}$
Younger	1996	2006	2001	5	-5	-1	2	5
Mid-age	1996	2004	2000	4	-4	-2	1	4
Older	1996	2005	$2000 /$ 2001	4.5	-4.5	-1.5	1.5	4.5

2.3.3 Endpoint coding

Code time so that the last measured time point has a value of zero and preceding measurements are decremented accordingly. Using this format, the intercept represents the mean value of the dependent variable at the endpoint.

Table 2.3.3 Endpoint coding for the first four surveys

	Survey 1	Survey 2	Survey 3	Survey 4
Younger	10	6	3	0
Mid-age	8	6	3	0
Older	9	6	3	0

It would be difficult to run a $D O$ loop in the preceding data step using these non-consecutive numbers. The solution is to run a $D O$ loop on the number of surveys you will use (i.e. for four surveys: DO time $=1$ to 4) and then recode the time variable (in a new data set) to reflect one of the three coding choices from above.

2.4 General SAS code

Standardised SAS code for longitudinal analysis using either the GENMOD or MIXED procedure is shown below. The required SAS terms are given in upper case, whilst user specified elements are in lowercase.

Extensive explanation of the code is available via the SAS Online Documentation.

PROC GENMOD

```
PROC GENMOD DATA = data-set-name;
CLASS variables;
MODEL dependent-variable= <explanatory variables> </ options>;
REPEATED subject=| </options eg. type=correlation-structure>;
LSMEANS <explanatory variables> </options>;
RUN; QUIT;
```


PROC MIXED

```
PROC MIXED DATA = data-set-name;
CLASS variables;
MODEL dependent-variable=<fixed effects></options>;
RANDOM random- effects </ options eg. type=correlation-structure>;
LSMEANS fixed effects </ options>;
parms (value-for-covariance-parameter-estimate-INTERCEPT)
    (value-for-covariance-parameter-estimate-RESIDUAL);
RUN; QUI T;
```

The RANDOM statement in the MIXED procedure identifies the random effects and the MODEL statement identifies effects that are assumed to be fixed.

2.5 Computational issues in implementing SAS Procedures

2.5.1 Specification of random effects

An essential part of a mixed or random effects model is specifying which of the covariates or variables are random and which are fixed. Random effects are variables with values assumed to be from a random sample of subjects drawn from and representative of a larger population of values or observations. In contrast, fixed effects are variables which are the same across all subjects and are estimated in the model.

In the case of fixed categorical effects, we are usually interested in making explicit comparisons of one level against another, while for random factors the interest lies more in the extent to which the factor accounts for variance in the dependent variable. For example, in the analysis of the effect of pet ownership on physical functioning among a sample of 7000 women, pet ownership is taken as a fixed effect, and we are interested in comparing the mean physical functioning across the different levels of ownership and the unique ID for each of the 7000 women would be treated as a random factor. If the comparison of the levels of a variable against one another is the goal, then these variables should be treated as fixed effects.

Random effects can be included in a mixed model using the RANDOM statement. For example, a random intercept together with subject ID specification results in random effects being deviations from the fixed means. The line of code below specifies that each subject has their own intercept value.

```
RANDOM intercept | subject= I D;
```


2.5.2 Convergence

SAS may stop fitting a model early with warning 'stopped due to infinite likelihood' if there are convergence problems.

Explanation of convergence problems is available via the SAS Online Documentation.

Convergence problems in PROC MIXED may arise from estimating the covariance parameters in the model, not the fixed effects. For example, when the covariance parameters are on a different scale, the algorithm in PROC MIXED may have trouble converging. Furthermore, if there is very little variability in the time effects the variance of the random slopes may approach 0 , which may generate numerical difficulties.

Common causes of non-convergence:

- two of the covariance parameters are several orders of magnitude apart,
- data values are extremely large or extremely small,
- there is little variability in time effects,
- there is not enough data to estimate the specified covariance structure,
- linear dependencies exist among parameters,
- there is a mis-specified model or violation of model assumptions.

Recommendations to deal with non-convergence:

1. use the PARMS statement to input initial values;
2. rescale the data to improve stability;
3. specify the SCORING= option to invoke Fisher's scoring estimation method;
4. tune the maximum iteration (MAXITER= and MAXFUNC=) options in the PROC MIXED statement;
5. make sure no observations from the same subject are producing identical rows in the R or V matrix;
6. reduce the number of terms in the model.

In relation to the first two recommendations above:

1. Using the PARMS statement: Experience in the ALSWH suggests it may be practical to choose values based on results from an analysis of a sample of the women. The values are chosen from 'Covariance Parameter Estimates' - the first is the intercept, the second is the residual value estimate - these values give the model an initial starting point.
2. Centring the data to improve stability: this can be achieved, for example, with mental health (MH), by subtracting 80 (an approximate mean) from every value (this results in values more or less centred on zero). Then add 80 (or whatever value was used) to the final LSMEANS score.
3. Rescaling the data could also improve stability, that is subtracting a value that is approximately the mean and then by dividing by some value that is approximately the standard deviation.

2.5.3 Methods to randomly select a smaller sample to deal with non-convergence

As mentioned above, if you experience problems of non-convergence with your model it can be useful to select a smaller sample to obtain starting estimates. This sample should be selected prior to creating the long format data structure.

The SURVEYSELECT procedure in SAS provides a variety of methods for selecting probability-based random samples. The following code provides a basic outline for selecting a random sample of subjects.

```
proc surveyselect data = data-set-name
    method=SRS
    rep=1
    sampsize=7000
    seed=12345
    out=output-data-set-name;
ID _all_;
run;
```

Method specifies the method for sample selection - SRS requests Simple Random Sampling, that is selection with equal probability and without replacement.

Rep specifies the number of separate samples to be taken.

Sample size specifies the number of units selected for the sample

Seed specifies the initial value for random number generation (useful for reproducing identical samples by using the same initial value).

Out names the output data set that contains the sample.

ID names variables from the input data set to be included in the output data set of selected units - here _all_ indicates that all initial variables are to be kept.

Further information can be obtained from the SAS Online Documentation files on the SURVEY SELECT procedure.

2.5.4 Estimates of group means

By default LSMEANS in PROC GENMOD gives equal weights to all classification effects (that is, it assumes equal numbers in each group) and so the adjusted estimates of group means may be incorrect. Therefore we recommend PROC MIXED instead as it has the observed margins (OM) option, which weights means in proportion to group size.

2.5.5 Missing waves and missing items

If a subject does not participate at all in a particular survey (or "wave") then this person's data for all other surveys are omitted from the analysis if PROC GENMOD is used. In contrast PROC MIXED is not affected by a missing wave of data but the data are assumed to be missing at random (which may not be a reasonable assumption).

If a subject has missing data on one item (or more) from a particular survey then all the data from that survey are omitted from the analysis by both procedures.

PART 3: Example of continuous outcome - measured at two times

3.1 Introduction

Relationship between companion animals and physical health in older women.

Research Question: Do older women who have companion animals have better physical functioning on average over time than older women without companion animals?

In this analysis we examine both cross-sectional and longitudinal associations between pet ownership and physical health whilst controlling for ability to manage on current income.

To estimate the effects of pet ownership on Physical Functioning (PF), models were used to analyse the data from Surveys 2 and 3 simultaneously. Fitting models, using both the MIXED and GENMOD procedures, we estimated mean PF (and 95% confidence limits) for each level of pet ownership at each survey, adjusted for ability to manage on income.

Table 3.1.1 indicates the group size and mean Physical Functioning (mean PF) for each category of pet ownership and income, for the two times.

Table 3.1.1 Frequency and mean Physical Functioning for categories of Pet Ownership and Ability to manage on income.

Pet Ownership					Ability to manage on income		
Time	Category	Frequency	Mean PF		Category	Frequency	Mean PF
1	No Pet	4450	64.0		Easy	1657	70.2
1	Dog Pet	1458	63.7		Not too bad	3628	63.8
1	Cat Pet	653	62.9		Difficult Sometimes	1364	57.8
1	Other Pet	439	60.2		Impossible	351	52.9
2	No Pet	4652	58.8		Easy	1705	64.6
2	Dog Pet	1352	57.7		Not too bad	3607	58.7
2	Cat Pet	613	58.9		Difficult Sometimes	1216	52.7
2	Other Pet	383	57.7		Impossible	472	50.7

For the transition analysis of change in pet ownership (o23pet), four categories were created: pet at surveys 2 and 3 ; no pet at surveys 2 and 3; pet at survey 2 but not at survey 3 ; and pet at survey 3 but not at survey 2 .

Table 3.1.2 indicates the group size and mean Physical Functioning (mean PF) at two times for each of the categories in the change in pet ownership variable between the two surveys.

Table 3.1.2 Frequency and mean Physical Functioning for categories of Change in Pet Ownership

Change in Pet Ownership (o23pet)			
Category	Frequency	Mean PF	
		Time 1	Time 2
Yes \rightarrow Yes	1992	63.4	58.7
No \rightarrow No	4094	64.3	59.2
Yes \rightarrow No	558	61.0	55.6
No \rightarrow Yes	356	60.6	54.3

The SAS output for the four models (PROC GENMOD and PROC MIXED - each unadjusted and adjusted) are annotated in sections 3.3 to 3.6. Section 3.7 identifies the differences in least squares means (ls means) produced from the GEE (GENMOD) and random effects (MIXED) procedures.

3.2 Model SAS Code

Here is the SAS code for four different analyses using dataset petstack:

MODEL 1: GEE model to estimate the marginal means for physical functioning by pet ownership at each survey.

```
Proc genmod data = petstack;
class IDalias time pet ;
model pf= time time*pet / type3;
repeated subject=IDalias / type=EXCH;
lsmeans time time*pet / cl e;
run; quit;
```

i. Type 3 specifies score statistics and p-values which adjust for all other terms in the model.
ii. The repeated command indicates there are repeated data for each subject.
iii. Type EXCH specifies an exchangeable working correlation matrix (which is the only option for just two measurement times, but there are other options for more than two repeated measures; see SAS Online Documentation).
iv. The Ismeans command produces mean estimates of PF for each of the pet ownership categories at each time. .

MODEL 2: GEE model for marginal means for physical functioning by pet ownership, adjusted for the ability to manage on income variable at both times.

```
Proc genmod data = petstack;
class IDalias time pet income;
model pf= time time*pet time*income / type3;
repeated subject=IDalias / type=EXCH;
lsmeans time time*pet time*income / cl e;
run; quit;
```

v. The Ismeans command produces mean estimates of PF for each of the pet ownership categories at each time, adjusted for ability to manage on income. However the numbers of subjects in each category of
ability to manage on income are assumed to be equal (which they are not).

MODEL 3: Random effects models with pet ownership and time as fixed effects and subject as a random effect.

```
Proc mixed data = petstack ;
class IDalias time pet;
model pf= time time*pet / cl solution;
random intercept / type = VC subject=IDalias;
lsmeans time time*pet / om cl e;
run; quit;
```

vi. Solution gives the estimates of fixed effects
vii. VC gives the variance components corresponding to the random effects
viii. The om option for the Ismeans command ensures that the correct means are estimated.

MODEL 4: Random effects model for physical functioning and pet ownership, adjusted for the ability to manage on income variable at both times.

```
proc mixed data = petstack ;
class IDalias time pet income;
model pf= time time*pet time*income / cl solution;
random intercept / type = VC subject=IDalias;
lsmeans time time*pet time*income / om cl e;
run; quit;
```

Models incorporating the change variable for pet ownership between two surveys use similar syntax - with the variable for change in pet ownership between surveys (o23pet) replacing the time specific values. For example, the random effects model, adjusted for ability to manage on income, would have the following SAS syntax:

```
proc mixed data = petstack2 ;
class IDalias time o23pet income;
model pf= time time*o23pet time*income / cl solution;
random intercept / type = VC subject=IDalias;
lsmeans time time*o23pet time*income / om cl e;
run; quit;
```


3.3 MODEL 1: PROC GENMOD unadjusted

The model information describes the model, the covariates that are included, and the method used to fit the model. Note that there are 14000 observations, but only 7000 subjects (IDalias) - this results from reformatting to long format over two time periods, so that the number of observations is two times 7000. There are 11 parameters to be estimated: the intercept, each of the two times and each of the four pet ownership categories at each of the two times.

The preferred criteria for assessing goodness of fit are the scaled Deviance and scaled Pearson statistics. Both indicate reasonable fit if Value/DF is close to one.

Criteria For	Assessing	Goodness Of Fit	
Criterion	DF	Value/DF	
Deviance	$14 E 3$	9621494.2472	687.6425
Scaled Deviance	$14 E 3$	14000.0000	1.0006
PearsonChi-Square	$14 E 3$	9621494.2472	687.6425
ScaledPearson X2	$14 E 3$	14000.0000	1.0006
LogLikelihood		-65594.0222	
Algorithm converged.			

Initial Parameter Estimates are an intermediate step in the model fitting and can usually be ignored. The parameter estimates comprise an overall mean (called the intercept) and corner point estimates of the other effects with "other pet" as the reference category. The reference category is set by default or can be specified on either theoretical grounds or sample size considerations.

The parameter estimates from the GEE model are shown below. The correlation value of 0.74 shows that the PF values for the same subjects at the two surveys are highly correlated.

Type 3 score statistics indicate the p-values for the null hypotheses, that there is no effect of time, or of pet ownership by time. The two p-values obviously indicate the strong effect of time on physical functioning ($\mathrm{p}<0.0001$), but no effect of pet ownership over time on physical functioning ($\mathrm{p}=0.4089$).

```
Score Statistics For Type 3 GEE Analysis
Scurce 
```

The coefficients for the least squares means are shown in the output below, these are used to calculate the means. For example, for no pet at time 1 the estimate is P1 * $58.3792+\mathrm{P} 2$ *3.5104 $+\mathrm{P} 3^{*} 0+\mathrm{P} 4 * 1.9859+\mathrm{P} 5 * 0+\mathrm{P} 6 * 0 \ldots=63.876$. More generally the mean PF for
each of the 8 groups is obtained by multiplying the matrix of 1 s and 0 s below by the vector of parameter estimates in the box with Analysis of GEE Parameter Estimates.

Coefficients for time Least Squares Means												
Label	Row	P1	P2	P3	P4	P 5	P6	P 7	P 8	P9	P10	P11
t i me	1	1	1	0	0.25	0.25	0.25	0.25	0	0	0	
t i me	2	1	0	1	0	0	0	0	0.25	0.25	0.25	0.25
time*pet	1	1	1	0	1	0	0	0	0	0	0	0
time*pet	2	1	1	0	0	1	0	0	0	0	0	0
time*pet	3	1	1	0	0	0	1	0	0	0	0	0
t i me*pet	4	1	1	0	0	0	0	1	0	0	0	0
time*pet	5	1	0	1	0	0	0	0	1	0	0	0
t i me*pet	6	1	0	1	0	0	0	0	0	1	0	0
time*pet	7	1	0	1	0	0	0	0	0	0	1	0
time*pet	8	1		1	0	0	0	0	0	0	O	1

The resulting estimates (and corresponding confidence limits, etc) are shown below. The chisquare tests are testing hypotheses that the mean PF values for each category are zero which are obviously rejected as the p -values are less than 0.0001 . Note that the significant effect of 'time' on PF results in the means at time 2 being much lower than the means at time 1.

Least Squares Means									
Effect	$t \mathrm{i} \mathrm{me}$	pet	Estimate	$\begin{gathered} \text { Standard } \\ \text { Error } \end{gathered}$	DF	Chi. Square	Pr>ChiSq	Alpha	Confidence Li mits
ti me	1		63.0803	0.3801	1	27542	<. 0001	0.05	62.335363 .8253
t i me	2		58.4015	0.4376	1	17807	<. 0001	0.05	57.5437 59.2593
t i me*pet	1	1 NoPet	63.8756	0.3376	1	35794	<. 0001	0.05	$63.2138 \quad 64.5373$
ti me*pet	1	2 DogPet	63.5607	0.5636	1	12720	<. 0001	0.05	$62.4561 \quad 64.6652$
ti me*pet	1	3 CatPet	62.9954	0.7718	1	6661.3	<. 0001	0.05	$61.4826 \quad 64.5082$
ti me*pet	1	40 hPPet	61.8896	0.9316	1	4413.8	$<.0001$	0.05	$60.0638 \quad 63.7154$
ti me*pet	2	1 NoPet	58.6745	0.3812	1	23689	<. 0001	0.05	$57.9273 \quad 59.4216$
time*pet	2	2 DogPet	58.1521	0.6534	1	7921.2	<. 0001	0.05	$56.8715 \quad 59.4327$
ti me*pet	2	3 CatPet	58.4001	0.9335	1	3914.1	<. 0001	0.05	$56.5705 \quad 60.2296$
ti me*pet	2	40 hPPet	58.3792	1. 0349	1	3182.2	<. 0001	0.05	56.3509 60.4076

3.4 MODEL 2: PROC GENMOD adjusted

The table below shows the 19 parameters that are fitted for time, time by pet ownership at each survey, and time by ability to manage on income at each survey (together with a mean effect or 'intercept').

As discussed for the previous model, the criteria for assessing goodness of fit, the scaled Deviance and scaled Pearson statistics indicate very good fit with Value/DF close to one.

As in the previous model, initial parameter estimates for the GEE model are displayed by SAS and should not be confused with the final Least Squares Means. This is intermediate output, which can usually be ignored, and has been ommitted.

The box below shows the final estimates.

Type 3 Score statistics and p-values provide tests of the null hypotheses of no effect of pet ownership (adjusted for ability to manage on income), and the effect of ability to manage on income (adjusted for pet ownership). These results indicate that after considering the potential confounding of ability to manage on income, pet ownership is still not significant.

```
Score Statistics For Type 3 GEE Analysis
\begin{tabular}{lrrr} 
Source & DF & Chi-Square & Pr>ChiSq \\
time & 1 & 93.74 & \(<.0001\) \\
time*pet & 6 & 5.26 & 0.5110 \\
time*income & 6 & 147.88 & \(<.0001\)
\end{tabular}
```

The following box shows the multipliers used for the least squares means calculations. Note that each category of ability to manage on income is given an equal weight of 0.25 , suggesting there are equal numbers of subjects in each category, which is incorrect, as shown in the table in Section 3.1.

Coefficients	for	t i me	Least	Squa	ares	Mean											
Label Row Pl	P2 P3	P4	P5	P6	P7	P 8	P9 P	P10	P11	P12	P13	P14	P15	P16	P17	P18	P19
time 1	10	0.25	0.25	0.25	0.25	0	0	0	0	0.25	0.25	0.25	0.25	0	0		0
time 21	01	0	0	0	0	0.25	0.25	0.25	0.25	0	0	0	0	0.25	0.25	0.25	0.25
time*pet 1	10	1	0	0	0	0	0	0	0	0.25	0.25	0.25	0.25	0	0	0	0
time*pet 21	10	0	1		0		0	0	0	0.25	0.25	0.25	0.25	0	0	0	0
time*pet 31	10	0	0	1	0	0	0	0	0	0.25	0.25	0.25	0.25	0	0	0	0
time*pet 41	10	0	0	0	1	0	0	0	0	0.25	0.25	0.25	0.25	0	0	0	0
time*pet 51	01	0	0	0	0	1	0	0	0	0	0	0	0	0.25	0.25	0.25	0.25
time*pet 61	01	0	0	0	0	0	1	0	0	0	0	0	0	0.25	0.25	0.25	0.25
time*pet 71	01	0	0	0	0	0	0	1	0	0	0	0	0	0.25	0.25	0.25	0.25
time*pet 81	01	0	0	0	0	0	0	0	1	0	0	0	0	0.25	0.25	0.25	0.25
time*income 1	11	0	0.25	0.25	0.25	0.25	0	0	0		1	0	0	0	0	0	00
time*income 2	11	0	0.25	0.25	0.25	0.25	0	0	0	0	0	1	0	0	0	0	00
time*income 3	11	0	0.25	0.25	0.25	0.25	0	0	0	0	0	0	1	0	0	0	00
time*income 4	11	0	0.25	0.25	0.25	0.25	0	0	0		0	0	0	1	0	0	00
time*income 5	10	1	0	0	0	0	0.25	0.25	0.25	0.25	0	0	0	0	1	0	00
time*income 6	10	1	0	0	0	0	0.25	0.25	0.25	0.25	0	0	0	0	0	1	00
ti me*income 7	10	1	0	0	0	0	0.25	0.25	0.25	0.25	0	0	0	0	0	0	10
time*income 8	10	1	0	0	0	0	0.25	0.25	0.25	0.25	0	0	0	0	0	0	01

The least squares adjusted means shown in the table below will be inaccurate if they do not correctly reflect the distribution of 'ability to manage on income' among ALSWH participants. The sizes of the differences among the marginal means are maintained although the absolute values may differ to those obtained using multipliers that correctly reflect the actual distribution of 'ability to manage on income'.

3.5 MODEL 3: PROC MIXED unadjusted

The model information describes the model and variables involved and the method used to fit it. Fixed Effects SE Method - Model Based describes the method used to compute the approximate standard errors for the Fixed-Effects parameter estimates. Note again 7000 subjects, and 14000 observations ($\mathrm{n}=$ times*subjects), and the absence of missing data is indicated by number of subjects not used $=0$. The class level information lists the level of the fixed effect variables specified in the model.

```
Data Set Model Information WORK. PETSTACK
Dependent Variable pf
Covariance Structure Variance Components
Subject Effect
Estimation Method
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Containment
Class Level Information
Class Levels Values
IDalias 7000 not printed
time 2 1 2
pet 4 1NoPet 2DogPet 3CatPet 40therPet
Di mensions
Covariance Parameters
Columns in X
Columns in Z Per Subject 11
Subjects 7000
Max Obs Per Subject
Number of Observations Read 14000
Number of Observations
Number of Observations Used 14000
Number of Observations Not Used O
```

The iteration history describes the optimisation of the residual log likelihood and describes the number of iterations that the algorithm takes in order to minimise the objective function.

The convergence criterion was met after two iterations. The estimates of the (co)variance components were - intercept variance (for IDalias) $=510.54$ and the residual variance $=$ 177.04 - showing that the between subject variance is larger than the within subject variance in this case.

NOTE: these two covariance parameter estimates obtained from a subsample of the data can be used as starting points for the model if non-convergence is an issue. See Section 2.5.2 for more details and explanation.

```
Convergence criteria met.
Covariance Parameter Estimates
Cov Parm Subject Estimate
Intercept IDalias 510.54
Residual 177.04
```

The statistics that SAS uses to assess the goodness of fit of the model are Residual Log Likelihood, Akaike's Information Criteria (AIC), the corrected form of Akaike's Information Criteria (AICC) and Schwarz's Bayesian Criterion (BIC). AIC, AICC and BIC are closely related to the log likelihood statistics with some adjustment for degrees of freedom (i.e. the number of parameters estimated) and they are used when comparing one model with another (a smaller values indicates a better fit).

```
    Fit Statistics
.2 Res Log Likelihood
    125570.3
AlC (smaller is better)
125574.3
AICC(smaller is better)
    125574.
```

The solution (i.e., estimates) for the fixed effect parameters are shown in the following box for the fixed effect (pet), with approximate standard errors and corresponding confidence intervals. The $\operatorname{Pr}>|t|$ column contains the two-tailed p-value for a test of the null hypothesis that the parameter value is zero. Note that the t value and $\operatorname{Pr}>|t|$ here are comparable to the output z-value and corresponding probability in the PROC GENMOD unadjusted model (see Analysis of GEE parameter estimates, empirical standard error estimates, Section 3.3).

Solution for Fixed Effects									
			Standard						
Effect time	pet	Estimate	Error	DF t	Value	$\operatorname{Pr}>\|t\|$	Alpha	Lower	Upper
Intercept		58.3780	0.9939	6999	58.74	<. 0001	0.05	56.4297	60.3262
time 1		3.5098	1. 0405	6993	3.37	0.0007	0.05	1.4702	5.5495
time 2		0							
time*pet 1	1 NoPet	1.9880	0.9495	6993	2. 09	0.0363	0.05	0.1268	3.8492
time*pet 1	2 DogPet	1.6727	1. 0685	6993	1. 57	0.1175	0.05	-0.4220	3.7673
time*pet 1	3 CatPet	1.1077	1.2050	6993	0.92	0.3580	0.05	-1. 2544	3.4698
time*pet 1	40 herPet	0							
time*pet 2	1 NoPet	0.2967	1. 0092	6993	0.29	0.7688	0.05	-1.6817	2. 2751
time*pet 2	2 DogPet	-0.2264	1. 1321	6993	-0.20	0.8415	0.05	-2.4456	1.9929
time*pet 2	3 CatPet	0.02252	1.2680	6993	0.02	0.9858	0.05	-2.4631	2. 5081
time*pet 2	40 herPet	0		.		.	.		

The Type 3 Tests of Fixed Effects indicate the F tests and p-values refer to tests of null hypotheses of no effects. Thus we see again that time is significant ($\mathrm{p}<0.0001$) but the interaction of time by pet is not $(\mathrm{p}=0.42)$.

```
Type 3 Tests of Fixed Effects
```


Coefficients for pet ownership by time.

Least squares means for physical functioning by pet ownership at each time clearly indicate a bigger difference between the time periods than within the pet categories.

NOTE: these least square mean estimates are the same as the PROC GENMOD least squares means estimates (to two decimal places).

Effect time	Least pet	Squares Mea St andard Estimate	Error	DF	Value	$\operatorname{Pr}>\|t\|$	Alpha	Lower	Upper
time $\quad 1$		63.6033	0.3134	6993	202.94	<. 0001	0.05	62.9889	64.2177
time 2		58.5334	0.3134	6993	186.76	<. 0001	0.05	57.9190	59.1478
time*pet 1	1 NoPet	63.8758	0.3659	6993	174.59	<. 0001	0.05	63.1586	64.5930
time*pet 1	2 DogPet	63.5605	0.5869	6993	108.30	<. 0001	0.05	62.4100	64.7110
time*pet 1	3 CatPet	62.9955	0.8192	6993	76.90	<. 0001	0.05	61.3896	64.6014
time*pet 1	40 hPet	61.8878	0.9321	6993	66.39	<. 0001	0.05	60.0606	63.7150
time*pet 2	1 NoPet	58.6747	0.3603	6993	162.85	<. 0001	0.05	57.9684	59.3809
time*pet 2	2 DogPet	58.1516	0.6072	6993	95.77	<. 0001	0.05	56.9613	59.3419
time*pet 2	3 CatPet	58.4005	0.8441	6993	69.18	<. 0001	0.05	56.7457	60.0553
time*pet 2	40 hPet	58.3780	0.9939	6993	58.74	<. 0001	0.05	56.4297	60.3262

3.6 MODEL 4: PROC MIXED adjusted

The class level information lists the level of the variables specified in the model, with IDalias as a random effect, and time, pet and ability to manage on income as fixed effects.

```
Model Information
Dependent Variable
Covariance Structure Variance Components
Subject Effect IDalilas
Estimation Method REML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Containment
Class Level Information
Class Levels Values
IDalias 7000 not printed
t ime }
pet 4 1NoPet 2DogPet 3CatPet 40therPet
income 1ImpDA 2DStime 3NotBad 4Easy
Dimensions
Covariance Parameters
Columns in X
Columns in Z Per Subject
Subjects
    19
    7000
Max Obs Per Subject
Number of Observations Read 14000
Number of Observations
Number of Observations Read
Number of Observations
Number of Observations Not Used O
```

The iteration history shows that four iterations were needed to reach the convergence criterion.

Iteration History		
Iteration Evaluations	- 2 Res Log Like	Criterion
01	130740.67311213	
12	125402.97530480	0.00002000
21	125402.53874102	0.00001152
31	125401.95449849	0.00000001

The estimates of the covariance components were - intercept variance $=492.56$ and the residual variance $=178.29$ - showing that again the between subject variance is larger than the within subject variance in this case.

```
Convergence criteria met.
Covariance Parameter Estimates
Cov Parm Subject Estimate
Intercept IDalias 492.56
Residual 178.29
```

This model (including ability to manage on income) is a better fit, e.g. according to AIC (AIC $=125406)$, than the model with pet alone $(\mathrm{AIC}=125574)$.

Fit Statistics	
-2 Res LogLikelihood	125402.0
AlC(smaller is better)	125406.0
AlCC (smaller is better)	125406.0
BIC (smaller is better)	125419.7

The box below shows the fixed effects estimates with an overall mean (intercept) and effects relative to reference categories of 'other pet' and 'easy to manage on income'.

Solution for Fixed Effects										
				Standard						
Effect	t i me	pet / i ncome	Estimate	Error	DF	t Value	$\operatorname{Pr}>\|t\|$	Alpha	Lower	Upper
Intercept			61.9767	1.0739	6999	57.71	<. 0001	0.05	59.8715	64.0818
ti me	1		3.8254	1.1456	6987	3.34	0.0008	0.05	1. 5797	6.0710
time	2		0							
t i me*pet	1	1 NoPet	1.7185	0.9494	6987	1. 81	0.0703	0.05	-0.1426	3. 5795
time*pet	1	2 DogPet	1.8529	1. 0668	6987	1.74	0.0825	0.05	-0.2384	3.9442
t i me*pet	1	3 CatPet	1. 0222	1. 2034	6987	0.85	0.3957	0.05	-1.3369	3.3813
time*pet	1	40 hPet	0							
ti me*pet	2	1 NoPet	0.1240	1. 0091	6987	0.12	0.9022	0.05	-1.8541	2. 1021
time*pet	2	2 DogPet	-0.1327	1.1303	6987	-0.12	0.9066	0.05	-2.3485	2.0831
ti me*pet	2	3 CatPet	0.02898	1.2662	6987	0.02	0.9817	0.05	-2.4532	2. 5111
t i me*pet	2	40 hPet	0							
ti me*income	1	11 mp DA	- 9.9366	1. 1094	6987	-8.96	<. 0001	0.05	-12.1113	-7.7619
time*income	1	2 DSt i me	-7.0030	0.7105	6987	-9.86	<. 0001	0.05	-8.3959	-5.6102
time*income	1	3 Not Bad	-3.6845	0.5572	6987	-6.61	<. 0001	0.05	-4.7768	- 2.5922
time*income	1	4 Easy	0							
time*income	2	11 mp DA	- 7.6748	0.9862	6987	-7.78	<. 0001	0.05	-9.6080	-5.7417
time*income	2	2 DSt i me	-6.9720	0. 7258	6987	-9. 61	<. 0001	0.05	-8.3948	-5. 5492
time*income	2	3 Not Bad	-3.4427	0.5520	6987	-6. 24	<. 0001	0.05	-4.5248	-2.3606
time*income	2	4 Easy	0	

The test for fixed effects provides us with a synopsis analogous to an analysis of variance table. It shows statistically significant effects for time and for ability to manage on income by time. We can also see that pet is not statistically significant in the model (similar results to PROC GENMOD).

Type 3 Tests of Fixed Effects Effect Num DF Den DF FValue Pr $>$ F time 1 6987 106.90 $<.0001$ time*pet 6 6987 0.85 0.5312 time*income 6 6987 27.62 $<.0001$				

Due to the use of the observed margins function the coefficients shown below reflect the distributions of both the pet variable and the ability to manage on income variable. Compare the correct coefficients below, to those produced in the adjusted PROC GENMOD model (0.25 for all levels of pet and income).

The box below shows least squares means obtained using the om function. Note that the LSMEANS are no longer the same as those obtained from PROC GENMOD.

Effect		Least Squares Means								
	t i me	pet/ i ncome		Standar Error				Al pha	Lower	upper
ti me	1		63.6033	0.3096	6987	205.46	<. 0001	0.05	62.9965	64.2102
ti me	2		58.5334	0. 3096	6987	189.08	<. 0001	0.05	57.9265	59.1402
ti me*pet	1	1 NoPet	63.7481	0. 3625	6987	175.85	<. 0001	0.05	63.0374	64.4587
time*pet	1	2 DogPet	63.8825	0.5843	6987	109.32	<. 0001	0.05	62.7370	65.0279
time*pet	1	3 CatPet	63.0517	0.8162	6987	77. 25	<. 0001	0.05	61.4518	64.6517
time*pet	1	40 hPPet	62.0296	0.9304	6987	66.67	<. 0001	0.05	60.2056	63.8535
time*pet	2	1 NoPet	58.5981	0.3568	6987	164.23	<. 0001	0.05	57.8986	59.2975
time*pet	2	2 DogPet	58.3414	0.6040	6987	96.60	<. 0001	0.05	57.1574	59.5254
time*pet	2	3 CatPet	58.5030	0.8409	6987	69.57	<. 0001	0.05	56.8546	60.1515
time*pet	2	40 hPet	58.4740	0.9923	6987	58.93	<. 0001	0.05	56.5288	60.4193
time*income	e 1	11 mp DA	57.4392	1. 0066	6987	57.06	<. 0001	0.05	55.4659	59.4124
time*income	e 1	2 DSt i me	60.3728	0. 5485	6987	110.08	<. 0001	0.05	59.2976	61.4479
time*income	- 1	3 Not Bad	63.6913	0.3743	6987	170.16	<. 0001	0.05	62.9575	64.4250
time*income	e 1	4 Easy	67.3758	0.5171	6987	130.31	<. 0001	0.05	66.3622	68.3894
time*income	- 2	11 mp DA	54.3612	0.8765	6987	62.02	<. 0001	0.05	52.6430	56.0793
time*income	- 2	2 DSt i me	55.0640	0.5742	6987	95.90	<. 0001	0.05	53.9384	56.1895
time*income	- 2	3 Not Bad	58.5933	0.3752	6987	156.17	<. 0001	0.05	57.8578	59.3288
time*income	- 2	4 Easy	62.0360	0.5106	6987	121.51	<. 0001	0.05	61.0352	63.0369

3.7 Summary of least squares means

Table 3.7.1 shows estimates of mean levels of physical functioning (PF) in relation to companion animal ownership at Surveys 2 and 3. At each time the differences between pet categories appear insignificant both before and after adjustment for income; however as expected among older women there is a clear decline in overall physical functioning in the 3 years between survey 2 and 3 (times 1 and 2 in section 3.6). In contrast ability to manage on income was strongly associated with differences in PF ($\mathrm{p}<0.0001$) - results not shown here.

The table also illustrates that the unadjusted means from both models are identical; however the adjusted means are lower from the GENMOD procedure than the MIXED procedure due to the observed margins function used in the MIXED procedure.

Table 3.7.1 PETS ownership at Survey 2 and Survey 3

	PROC MIXED		PROC GENMOD	
		$\mathbf{P}=\mathbf{0 . 4 2 2 2}$	$\mathbf{p}=\mathbf{0 . 5 3 1 2}$	$\mathbf{p}=\mathbf{0 . 4 0 8 9}$
Survey 2	Unadjusted	Adjusted	Unadjusted	Adjusted
No Pet	$63.9(63.2,64.6)$	$63.7(63.0,64.5)$	$63.9(63.2,64.5)$	$62.4(61.6,63.2)$
Dog pet	$63.6(62.4,64.7)$	$63.9(62.7,65.0)$	$63.6(62.5,64.7)$	$62.5(61.3,63.7)$
Cat pet	$63.0(61.4,64.6)$	$63.1(61.5,64.7)$	$63.0(61.5,64.5)$	$61.7(60.1,63.2)$
Other pet	$61.9(60.1,63.7)$	$62.0(60.2,63.9)$	$61.9(60.1,63.7)$	$60.7(58.8,62.5)$
Survey 3				
No Pet	$58.7(58.0,59.4)$	$58.6(57.9,59.3)$	$58.7(57.9,59.4)$	$57.6(56.7,58.4)$
Dog pet	$58.2(57.0,59.3)$	$58.3(57.2,59.5)$	$58.2(56.9,59.4)$	$57.3(56.0,58.7)$
Cat pet	$58.4(56.7,60.1)$	$58.5(56.9,60.2)$	$58.4(56.6,60.2)$	$57.5(56.6,59.4)$
Other pet	$58.4(56.4,60.3)$	$58.5(56.5,60.4)$	$58.4(56.4,60.4)$	$57.5(55.4,59.5)$

Table 3.7.2 presents the results of analyses examining associations between change in companion animal ownership and mean levels of PF across the two surveys. The differences in PF between categories of the transition variable for changes in pet ownership (e.g., moving from not owning a pet at Survey 2 to owning a pet at Survey 3) were statistically significant,
even though they were small compared to the overall decline in physical functioning as a result of the passage of time (i.e., between surveys).

The same differences in mean Physical Functioning for change in pet ownership are apparent in table 3.7.2.

Table 3.7.2 PETS change in ownership (SAS output not shown)

PROC MIXED
PROC GENMOD

	$\mathbf{P}=\mathbf{0 . 0 0 1 8}$	$\mathbf{P}=\mathbf{0 . 0 0 5 8}$	$\mathbf{P}=\mathbf{0 . 0 0 4 3}$	$\mathbf{P}=\mathbf{0 . 0 1 3 3}$
Survey 2	Unadjusted	Adjusted	Unadjusted	Adjusted
Yes \rightarrow Yes	$63.38(62.2,64.5)$	$53.8(62.6,64.9)$	$63.4(62.3,64.5)$	$62.4(61.2,63.6)$
No \rightarrow No	$64.3(63.5,65.1)$	$64.1(63.3,64.9)$	$64.3(63.6,65.1)$	$62.8(61.9,63.6)$
Yes \rightarrow No	$61.0(58.9,63.2)$	$61.2(59.0,63.3)$	$61.0(58.9,63.2)$	$59.8(57.6,62.0)$
No \rightarrow Yes	$60.6(57.9,63.3)$	$60.6(57.9,63.3)$	$60.6(58.1,63.1)$	$59.2(56.7,61.7)$
Survey 3				
Yes \rightarrow Yes	$58.7(57.5,59.8)$	$58.9(57.8,60.1)$	$58.7(57.4,59.9)$	$57.9(56.6,59.2)$
No \rightarrow No	$59.2(58.4,60.0)$	$59.1(58.3,59.9)$	$59.2(58.4,60.1)$	$58.1(57.1,59.0)$
Yes \rightarrow No	$55.6(53.4,57.7)$	$55.7(53.6,57.9)$	$55.6(53.1,58.0)$	$54.7(52.3,57.2)$
No \rightarrow Yes	$54.3(51.5,57.0)$	$54.4(51.8,57.1)$	$54.3(51.3,57.2)$	$53.4(50.5,56.4)$

PART 4: Plotting results using SAS

A stock plot is a useful way of displaying averages and 95% confidence limits across time for different groups.

There are many alternative options available in SAS - for more options go to SAS online and SAS/GRAPH - SAS/GRAPH Statements or GPLOT procedure and search for additional options.

Data can be manually entered, or calculated from the output dataset in both MIXED and GENMOD procedures. Here, means and standard errors are entered manually and used to calculate confidence limits. Values for 'pet' categories are offset from one-another so that the plots of confidence intervals do not overlap. Do not make this offset any greater than necessary.

The results shown below come from the unadjusted MIXED model (Model 3).

```
data work.petsgraph;
    input time pet mean se;
    datalines;
11 63.8758 0.3659
1263.5605 0.5869
1362.9955 0.8192
1461.8879 0.9321
2 1 58.6746 0.3603
2 5 58.1516 0.6072
2 58.4005 0.8441
24 58.3781 0.9938
; run;
data work.expand;
    set work.petsgraph;
    z=probit(0.975);
    if pet=2 then ti me=t i me+0.02;
    if pet=3 then ti me=t i me +0.04;
    if pet=4 then ti me=t i me+0.06;
    yaxis=mean; output;
    yaxis=mean+(z*se); output;
    yaxis=mean-(z*se); output;
run;
```

The options below resets any current settings and specifies the font and height of the text to be used.

```
goptions reset=al| ftext=centx htext=2;
```

The four 'symbol' statements call the options for each level of the variable - i.e. no pet, dog pet, cat pet and other pet.

- $\mathbf{i}=$ option specifies the high/low/mean format for the graph
- $\mathbf{w}=$ width of the line
- line $=$ line type $($ solid $)$
- $\mathbf{f}=$ (font) the marker font associates every letter of the alphabet with a marker (see below)
- value = specifies which marker to use;

```
symbol 1 color=b| ack i =hi|ocjt w=4 | i ne=1 value=A f=marker;
symbol 2 color=blue i =hilocjt w=4 |i ne=1 value=U f=marker;
symbol 3 color=red i =hi|ocjt w=4 | i ne=1 value=W f=marker;
symbol 4 color=green i =hilocjt w=4 | i ne=1 value=V f=marker;
```

The first axis statement describes the horizontal axis (haxis below)

- minor indicates presence or absence of minor tick marks are along the x -axis
- offset indicates the amount of offset from the y-axis - this helps for readability of the graph - the larger the value the greater the offset
- order indicates the scale and range for the x -axis
- major indicates the height of the major tick marks - the larger the value the bigger the marks;

```
axiscl | abel=('Time') mi nor=none of f set=(5, 0) major=(h=0,1)
order=(1 to 2.5 by 0.5) value=('Survey 2'',''Survey 3'' ');
```

The second axis statement describes the y-axis

- a (in label) indicates the angle of the labelling - ' 0 ' writes it horizontally at the top of the y-axis, ' 90 ' writes it vertically along the y-axis
- minor indicates presence or absence of minor tick marks are along the y-axis;

```
axis2 |abel=(a=90 'Physical Functioning') mi nor=none;
```

This statement is associated with the legend

- position of the legend indicates bottom/top/middle of the window; left/centre/right; and outside/inside in relation to the axis area - the frame draws a frame around the legend;

```
I egendl position=( bottom center outside) frame label=none
value=(j=1 'No Pet' 'Dog Pet' 'Cat Pet' 'Other Pet');
```

The graph is created below in the GPLOT procedure. Note there is no frame around the axis area and there are statements specifying which axis is horizontal and which is vertical.

```
proc gplot data=work. expand;
plot yaxis*time=pet / noframe haxis=axisl
vaxis=axis2 | egend=| egendl;
run; quit;
```


Marker Font

A good online page for colour schemes in SAS is http://www.devenezia.com/docs/SAS/sascolors.html

Note that these do not always turn out as they appear.

Time
$\leftrightarrow 4$ No Pet $\quad *$ Dog Pet $\quad \leftrightarrow$ Other Pet

The SAS graphs appear most clear in Microsoft Word if they are pasted in as a Device Independent Bitmap using Paste Special.

PART 5: Sample Size

Notes on sample size calculation for longitudinal studies with continuous response variables.

These notes outline the theory of sample size calculation for comparing two groups at a single time-point and then give extensions to the case of longitudinal data.

Calculating an appropriate sample size for a study requires background information on the study factors such as the magnitude and variability of the more important response variables and the size of the effects that would be biologically or socially significant. ${ }^{4}$

For standard situations, for example with cross-sectional data, there is good software available; some of it free, such as PS which can be downloaded from http://biostat.mc.vanderbilt.edu/twiki/bin/view/Main/PowerSampleSize

The main purpose of this note is to describe sample size calculations for longitudinal studies with continuous response variables.

5.1 Single Time Point Studies

The following sample size formula is applicable for a study comparing two groups, each with N subjects ${ }^{4}$. The null hypothesis states that there is no difference in the mean response variable between the groups, versus an alternative hypothesis that there is a difference. We want to test this two-tailed hypothesis at the level of significance α and with power β.

$$
\begin{equation*}
N=\frac{2 \sigma^{2}\left(Z_{(1-\alpha / 2)}+Z_{(1-\beta)}\right)^{2}}{v^{2}} \tag{Equation1}
\end{equation*}
$$

where:

- $\quad N$ is the sample size per group
- σ is the standard deviation of the response variable, and is assumed to be equal in the two study groups (an estimate of σ, s may be substituted)
- $Z_{(1-\alpha / 2)}$ is the $(1-\alpha / 2)$ percentile point of the standard Normal distribution.
- $Z_{(1-\beta)}$ is the $(1-\beta)$ percentile point of the standard Normal distribution.
- $\quad v$ is the size of the effect that we wish to have a good chance of detection and would be biologically/socially important; it is calculated as the difference between the estimated means of the two groups being studied.

Percentile points from the standard Normal distribution that are most often used in sample size calculations are shown in Table 5.1.

Table 5.1: Percentiles of Standard Normal Distributions for varying α, β.

$\alpha / 2$	$Z_{(1-\alpha / 2)}$	Power $=1-\beta$	$Z_{(1-\beta)}$
0.05	1.645	0.8	0.84
0.025	1.960	0.9	1.28
0.005	2.575	0.95	1.645

If you need to design a study with unequal group sizes, for example because one group is easier to access than the other, then the following formula is relevant.

For unequal groups of size N_{1} and N_{2}, where $r=N_{1} / N_{2}$, the sample size formula is given by ${ }^{5}$:

$$
\begin{equation*}
N_{1}=\frac{\left(\sigma_{1}^{2}+\sigma_{2}^{2} / r\right)\left(Z_{1-\alpha / 2}+Z_{(1-\beta)}\right)^{2}}{v^{2}} \text { and } r=N_{1} / N_{2} \tag{Equation2}
\end{equation*}
$$

where:

- σ_{1} is the standard deviation in group 1 and σ_{2} the standard deviation in group 2 (the estimates s_{1} and s_{2} may be substituted for σ_{1} and σ_{2} respectively).

5.2 Extension to Longitudinal Studies

The sample size calculations for longitudinal studies are very similar to those from "standard" experimental studies which assume at most one response measurement. When repeated response measurements are made, and the aim of the research is to track the development of a response over time, then standard sample size formulae must be revised to incorporate the correlation between the repeated measures.

When analysing data from longitudinal studies, there are two types of comparisons we may want to make:

1) Comparing the rate of change of a response variable over time, between two different groups of subjects;
2) Comparing the average response for two groups.

It is important to differentiate between the two comparisons, as the formulae for calculating sample size differ.

The model for calculating sample size assumes that each person is measured at the same fixed times (for all subjects in all groups). Repeated measures from a subject are typically correlated. For simplicity in calculating sample size, assume the correlation between two variables remains the same across all time points.

If $Y_{i j k}$ represents the response for the i-th subject at time j, in group k, then assume $\operatorname{Var}\left(Y_{i j k}\right)=\sigma^{2}$ and $\operatorname{corr}\left(Y_{i j k}, Y_{i k}\right)=\rho$ for all $j \neq l$. i.e., ρ is the correlation coefficient between the repeated measures for the outcome variable of interest. The values for σ^{2} and ρ must be estimated from previous data, or assumed.

1) Comparing the rate of change over time - between different groups of subjects

Rate of change over time can be estimated as the slope of a straight line drawn through the two or more time points at which the response is measured. So, differences in rate of change can be tested as differences in slopes.

Assuming an equal number of subjects in each group, then the sample size formula is given as ${ }^{(5,6)}$:

$$
\begin{equation*}
N=\frac{2 \sigma^{2}(1-\rho)\left(Z_{(1-\alpha / 2)}+Z_{(1-\beta)}\right)^{2}}{m s_{t}^{2} v^{2}} \tag{Equation3}
\end{equation*}
$$

where:

- $\quad N$ is the required sample size per group to be compared
- σ is the standard deviation of the response variable
- $\quad \rho$ is the correlation coefficient of the repeated measurements
- $Z_{(1-\alpha / 2)}$ is the $(1-\alpha / 2)$ percentile point of the standard Normal distribution.
- $Z_{(1-\beta)}$ is the $(1-\beta)$ percentile point of the standard Normal distribution.
- m is the number of response measurements for each subject.
- $s_{t}^{2}=\sum_{j=1}^{m}\left(t_{j}-\bar{t}\right)^{2} / m$, with t_{j} being the time of measurement of the j-th repeated measurement $j=1, \ldots, m$.
- $\quad v$ is the difference in mean value of the response variable between the groups

For example, if a series of measurements were undertaken in 1996, 2000, 2003, then $t_{1}=0$ (baseline), $t_{2}=4$ (years), $t_{3}=7$ (years) and $m=3$.

Note that in this case, the sample size decreases as ρ increases. Also, the calculation assumes linear changes over time, and the formula does not allow for missing data, either due to dropouts or to missing responses at any particular time points.

2) Comparing the average response for $\mathbf{2}$ groups

If the outcome variable is continuous, then the equation for sample size when comparing means from two groups is as follows ${ }^{(5,7,8,9)}$:

$$
\begin{equation*}
N=\frac{2 \sigma^{2}[1+(T-1) \rho]\left(Z_{(1-\alpha / 2)}+Z_{(1-\beta)}\right)^{2}}{v^{2} T} \tag{Equation4}
\end{equation*}
$$

where:

- $\quad N$ is the sample size per group to be compared.
- σ is the standard deviation of the response variable.
- T is the number of follow-up measurements
- $\quad \rho$ is the correlation coefficient of successive measurements
- $Z_{(1-\alpha / 2)}$ is the $(1-\alpha / 2)$ percentile point of the standard Normal distribution.
- $Z_{(1-\beta)}$ is the $(1-\beta)$ percentile point of the standard Normal distribution.
- $\quad v$ is the difference in mean value of the response variable between the groups.

For example, if we are comparing changes over 3 surveys (S1, S2, S3), then $T=2$ $(T=m-1)$. Note that in this case, the sample size increases as ρ increases.

This formula can be implemented in a spreadsheet. An example is given in Figure 5.1.
If we have groups of unequal size N_{1} and N_{2}, where $r=N_{1} / N_{2}$, the above formula is adjusted as follows:

$$
\begin{equation*}
N_{1}=\frac{(r+1) \sigma^{2}[1+(m-1) \rho]\left(Z_{(1-\alpha / 2)}+Z_{(1-\beta)}\right)^{2}}{v^{2} r m} \tag{Equation5}
\end{equation*}
$$

A larger sample size will be required as:

- the standard deviation of the outcome increases
- the power of the test increases
- the significance level of the test decreases
- the size of difference we wish to detect decreases

The sample size required will decrease with more follow-up measurements

Example: Comparing differences in average SF-36 subscale scores over time in relation to alcohol consumption among older women.

The 8 SF-36 dimension scores (or subscales) of interest are bodily pain (BP), general health (GH), mental health (MH), physical functioning (PF), role emotional (RE), role physical (RP), social functioning (SF), vitality (VT). Each of these subscales has values between 0 and 100 , with higher scores representing better health. In a longitudinal study we may seek to determine whether or not there are significant differences in the average subscale scores for women consuming varying amounts of alcohol.

For each scale, the standard deviation of scores was calculated at each survey (see Table 5.2)
Table 5.2: Standard deviations of SF-36 subscales for Older cohort

Scale	Survey 1	Survey 2	Survey 3	Average Stdev.
Bodily Pain (BP)	26.87	27.17	26.78	27
General Health (GH)	22.09	21.21	20.55	21
Physical Functioning (PF)	26.36	25.94	28.16	26
Role Physical (RP)	42.52	41.68	41.08	42
Mental Health (MH)	17.04	16.20	15.81	16
Role emotional (RE)	37.37	34.93	35.74	36
Social Functioning (SF)	25.59	25.16	27.04	26
Vitality (VT)	20.99	21.05	20.63	21

The sample size formula requires a single estimate for standard deviation of the response, not individual estimates at each time point. As the standard deviations vary little across time, using either the maximum standard deviation, or an average of the 3 standard deviations, should be adequate for sample size calculations.

The final column in Table 5.2 above gives the values of standard deviation used (averages) in the final calculation (and in the XL spreadsheet). Note the values are rounded to the nearest integer for simplicity in entering the data into the spreadsheet.

We also need to calculate the correlation between repeated measurements from the survey data. Some example correlation matrices are given below, in Table 5.3, for the BP and RE subscales.

Table 5.3 Correlation matrices for BP and RE subscales between three times.

	O1BP	O2BP	O3BP
O1BP	1	0.57	0.54
O2BP		1	0.58
O3BP			1

	O1RE	O2RE	O3RE
O1RE	1	0.36	0.34
O2RE		1	0.37
O3RE			1

As for the standard deviations, the correlation values varied little across time for these two subscales. This is also true for the remaining 6 subscales but for simplicity, the remaining correlation matrices are not shown in this document.

The spreadsheet has options to change the values of α, β, T and ρ, and to vary the magnitude of the detectable difference (v).

Assuming we want to test for a difference in the average response between groups, not the rate of change of the response over time, we need to apply Equation 4 above.

For the bodily pain (BP) scale, in order to detect an average difference of 2 units with 80% power at the 5% significance level, the calculation for sample size would be as follows:

$$
\begin{aligned}
N & =\frac{(1.96+0.84)^{2} \times 27^{2} \times(1+1) \times[1+(2-1) \times 0.57]}{2^{2} \times 1 \times 2} \\
& =2246
\end{aligned}
$$

If the difference to be detected increases to 3 , a sample size of 998 per group is required, and for a difference of 5 units, the sample size required reduces to $\mathrm{N}=359$ per group at each time point.
*** Hypothesis: Comparing the average response for 2 groups

Figure 5.1: Example of spreadsheet for calculating sample size when comparing the averages of $\mathbf{2}$ groups.

PART 6: References

1. SAS. (1999). SAS/STAT Users Guide. SAS Inst. Cary, NC.
2. <http://www.umanitoba.ca/centres/mchp/concept/dict/Statistics/ random_effects/random_effects.html> ©2004 Manitoba Centre for Health Policy, accessed 16May 2005.
3. Ware, JE., Sherbourne, CD. (1992). The MOS 36-item Short-Form health survey (SF36): I Conceptual framework and item selection. Med Care 30: 473-483.
4. Dobson, AJ. (1984). Calculating Sample Size. Transactions of the Menzies Foundation 1984 Volume 7 pp75-79
5. Catellier, D. (2003). Office of Behavioural and Social Sciences Research: Summer Institute on Design and conduct of Randomized Clinical trials Involving Behavioural Interventions.
6. Diggle, PJ., Heagerty, P., Liang, K-Y., Zeger, S.L. (2002). Analysis of Longitudinal Data. Oxford University Press
7. Twisk, JWR. (2003). Applied Longitudinal Data Analysis for Epidemiology. Cambridge Press.
8. Schumm, P. (2004). Sample Size Calculation for Longitudinal Studies. North American Stats Users’ Group Meeting 2004.
9. Hedeker, D., Gibbons, R.D. (1999). Sample size Estimation for Longitudinal Designs with Attrition: Comparing Time-related Contrasts Between Two Groups. Journal of Educational and Behavioural Statistics 24:70-93

The following books and papers provide further information on longitudinal analysis.

Barnett AG., van der Pols JC., Dobson AJ. Regression to the mean: what it is and how to deal with it. International Journal of Epidemiology 2005; 34: 215-220.

Dobson AJ. An introduction to Generalized Linear Models (second edition). Chapman \& Hall/CRC, 2001 London and Boca Raton.

Diggle, PJ., Heagerty, P., Liang, KY., Zeger, SL. Analysis of Longitudinal Data (second edition). Oxford University Press, 2002.

Littell, RC., Henry, PR., Ammerman, CB. (1998). Statistical analysis of repeated measures data using SAS procedures. Journal of. Animal Science 1998; 76: 1216-1231.

The UNIVERSITY of NEWCASTLE

AUSTRALIA

